精英家教网 > 高中数学 > 题目详情
当α∈(0,)时,求证:sinα<α<tanα.

证明:如图,在直角坐标系中作出单位圆,α的终边与单位圆交于P,α的正弦线、正切线分别为MP、AT,则MP=sinα,AT=tanα.

∵SAOP=OA·MP=sinα,S扇形AOP=αr2=α,SAOT=OA·AT=tanα,又SAOP<S扇形AOP<SAOT

sinα<α<tanα,即sinα<α<tanα.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)
,(A≠0)
(1)当0≤x≤
π
2
时,求y=f(sinx)的最大值;
(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数A的取值范围;
(3)问a取何值时,方程f(sinx)=a-sinx在[0,2π)上有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x+a)=(x+a)|x|,x∈R.
(1)求f(x)的解析式;
(2)若f(1)>2,求a的取值范围;
(3)当0≤x≤1时,求f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(0,
3
2
)
,B(0,3),C(cosθ,sinθ),其中
π
2
<θ<
2
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)当0≤x≤
π
2
时,求函数f(x)=2sin(2x+θ)的最大值和最小值.

查看答案和解析>>

同步练习册答案