精英家教网 > 高中数学 > 题目详情

选修4--4:坐标系与参数方程

已知直线C1,C2(θ为参数)

(Ⅰ)当a=时,求C1与C2的交点坐标:

(Ⅱ)过坐标原点O做C1的垂线,垂足为A、P为OA的中点,当a变化时,求P点轨迹的参数方程,并指出它是什么曲线.

答案:
解析:

  解:(Ⅰ)当时,C1的普通方程为C2的普通方程为

  联立方程组解得C1C2的交点为(1,0),

  (Ⅱ)C1的普通方程为

  A点坐标为,故当变化时,P点轨迹的参数方程为

  (a为参数)

  P点轨迹的普通方程为

  故P点是圆心为,半径为的圆


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)(1)选修4-2:矩阵与变换
设矩阵M=
1a
b1

(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(α为参数),点Q极坐标为(2,
4
)

(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.

查看答案和解析>>

科目:高中数学 来源:2012届度湖北省师大一附中上学期高三期中检测理科数学试卷 题型:解答题

选修4­-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,在极坐标系中(与直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴),圆的方程为

(Ⅰ)求圆的直角坐标方程;

(Ⅱ)设直线与与圆交于点,求弦的中点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学1(江苏卷)解析版 题型:解答题

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答

             若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤.

A选修4-1:几何证明选讲

   如图,圆与圆内切于点,其半径分别为

的弦交圆于点不在上),

求证:为定值。

B选修4-2:矩阵与变换

已知矩阵,向量,求向量,使得

C选修4-4:坐标系与参数方程

在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

D.选修4-5:不等式选讲

解不等式:

 

查看答案和解析>>

科目:高中数学 来源:2013年福建省三明市高三质量检查数学试卷(解析版) 题型:解答题

(1)选修4-2:矩阵与变换
设矩阵
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(α为参数),点Q极坐标为
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.

查看答案和解析>>

同步练习册答案