精英家教网 > 高中数学 > 题目详情
关于x的方程(x2-1)2-|x2-1|+k=0有5个不同的实根,则实数k=   
【答案】分析:讨论x2-1的正负,画出高次函数的图象,观察即可得出答案.
解答:解:当x2-1≥0时原方程为
(x2-1)(x2-2)=-k
(x-1)(x+1)(x+)(x-)=-k
当x<0时原方程为
(x2-1)x2=-k
(x+1)(x-1)x2=-k
两种情况联立图象为
由此可知只有当k=0时,方程才可能有五个不同实根.
故答案为0.
点评:本题考查了高次方程的解,技巧有把高次方程因式分解,把所有根在数轴上从小到大依次排列,用平滑曲线从右上方开始顺次穿过所有根,值得注意的是如果根所在的因式为偶次曲线穿而不过,像图中的-1,0,1处.在x轴上下方的线分别代表y的值的正负.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根;
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c分别是△ABC中角A,B,C的对边,且(sinB+sinC+sinA)(sinB+sinC-sinA)=
185
sinBsinC,边b和c是关于x的方程:x2-9x+25cosA=0的两根(b>c),D为△ABC内任一点,点D到三边距离之和为d.
(1)求角A的正弦值;       
 (2)求边a,b,c;      
(3)求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程
4-x2
=x+a有且只有一个实根,则a的取值范围是
[-2,2)∪{2
2
}
[-2,2)∪{2
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程ax=-x2+2x+a(a>0,且a≠1)的解的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程
|1-x2|
+kx=
2
有3个不等实数根,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案