精英家教网 > 高中数学 > 题目详情
已知两曲线参数方程分别为
x=
5
cosθ
y=sinθ
(0≤θ<π)和
x=
5
4
t2
y=t
(t∈R),它们的交点坐标为
 
分析:利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.
解答:解:曲线参数方程
x=
5
cosθ
y=sinθ
(0≤θ<π)的直角坐标方程为:
x2
5
+y2=1

曲线
x=
5
4
t2
y=t
(t∈R)的普通方程为:
y2=
4
5
x

解方程组:
x2
5
+y2=1
y2=
4
5
x

得:
x=1
y=
2
5
5

∴它们的交点坐标为(1,
2
5
5
).
故答案为:(1,
2
5
5
).
点评:本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(注意:本小题为选做题,A,B两题选做其中一题,若都做了,则按A题答案给分)
A.当x,y满足条件|x-1|+|y+1|<1时,变量u=
x-1
y-2
的取值范围是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于A,B两点,则以线段AB为直径的圆的面积为
2
2

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二第二学期期末考试数学(理)试题 题型:解答题

(本题满分14分)已知直线的参数方程为, 曲线的极坐标方程为

(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;

(2)若为直线上任一点,是曲线上任一点,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知直线的参数方程为 曲线的极坐标方程为

(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;

(2)若为直线上任一点,是曲线上任一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知直线的参数方程为 曲线的极坐标方程为

(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;

(2)若为直线上任一点,是曲线上任一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省泰州中学高二第二学期期末考试数学(理)试题 题型:解答题

(本题满分14分)已知直线的参数方程为,曲线的极坐标方程为
(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;
(2)若为直线上任一点,是曲线上任一点,求的最小值.

查看答案和解析>>

同步练习册答案