精英家教网 > 高中数学 > 题目详情
已知y=4 x-
12
-3×2x+5,0≤x≤2
(Ⅰ)设t=2x,x∈[0,2],求t的最大值与最小值;
(Ⅱ)求f(x)的最大值与最小值及相应的x值.
分析:(Ⅰ)设t=2x ,0≤x≤2,由于函数t=2x 在R上是增函数,可得t的最大值与最小值.
(Ⅱ)由于函数 y=f(x)
1
2
(t-3)2+
1
2
,1≤t≤4.利用二次函数的性质可得f(x)的最大值与最小值及相应的x值.
解答:解:(Ⅰ)设t=2x ,0≤x≤2,由于函数t=2x 在R上是增函数,故当x=0时,t取得最小值为20=1,当x=2时,t取得最大值为22=4.
(Ⅱ)由于函数 y=f(x)=4 x-
1
2
-3×2x+5=
1
2
(2x2-3•2x+5=
1
2
t2-3t+5=
1
2
(t-3)2+
1
2
,1≤t≤4.
故当t=3时,函数y取得最小值为
1
2
,此时,x=log23.当t=1时,函数y取得最大值为
5
2
,此时,x=0.
点评:本题主要考查复合函数的单调性的应用,指数函数、二次函数的性质应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向量
a
=(sinωx+cosωx,1)
b
=(f(x),sinωx)
,其中0<ω<1,且
a
b
.将f(x)的图象沿x轴向左平移
π
4
个单位,沿y轴向下平移
1
2
个单位,得到g(x)的图象,已知g(x)的图象关于(
π
4
,0)
对称.
(1)求ω的值;
(2)求g(x)在[0,4π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是奇函数,且满足f(x+2)+2f(-x)=0,当x∈(0,2)时,f(x)=Inx-ax(a>
1
2
)
,当x∈(-4,-2),f(x)的最大值为-
1
4
,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
12
2x<4}
,B={x|x<a},C={x|m-1<x<2m+1},
(1)求集合A,并求当A⊆B时,实数a的取值范围;
(2)若A∪C=A,求实数m的取值范围;
(3)求函数y=4x-2x+1-1在x∈A时的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知集合A={x|
1
2
2x<4}
,B={x|x<a},C={x|m-1<x<2m+1},
(1)求集合A,并求当A⊆B时,实数a的取值范围;
(2)若A∪C=A,求实数m的取值范围;
(3)求函数y=4x-2x+1-1在x∈A时的值域.

查看答案和解析>>

同步练习册答案