科目:高中数学 来源:2011年河南省许昌四校高二第一次联考数学 题型:解答题
(本小题满分12分)设递增等比数列{
}的前n项和为
,且
=3,
=13,数列{
}满足![]()
=
,点P(
,
)在直线x-y+2=0上,n∈N﹡
(Ⅰ)求数列{![]()
},{
}的通项公式
(Ⅱ)设
=
,数列{
}的前n项和
,若
>2a-1恒成立(n∈N﹡),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届河南灵宝第三高级中学高二上学期第三次质量检测理数学(解析版) 题型:解答题
(本小题满分12分)设递增等比数列{
}的前n项和为
,且
=3,
=13,数列{
}满足
=
,点P(
,
)在直线x-y+2=0上,n∈N﹡.
(Ⅰ)求数列{
},{
}的通项公式;
(Ⅱ)设
=
,数列{
}的前n项和
,若
>2a-1恒成立(n∈N﹡),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011年河南省许昌四校高二第一次联考数学 题型:解答题
(本小题满分12分)设递增等比数列{
}的前n项和为
,且
=3,
=13,数列{
}满足
=
,点P(
,
)在直线x-y+2=0上,n∈N﹡
(Ⅰ)求数列{
},{
}的通项公式
(Ⅱ)设
=
,数列{
}的前n项和
,若
>2a-1恒成立(n∈N﹡),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
的切线在Y轴上的截距为bn,数列{an}满足:a1=2,an+1=f-1(an)(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{
}中,仅当n=5时,
取最小值,求A的取值范围;
(3)令函数g(x)=f-1(x)(1+x)2,数列{cn}满足:c1=
,cn+1=g(cn)(n∈N*),求证:对于一切
n≥2的正整数,都满足:1<
<2.
(文)已知函数f(x):
(0<x<1)的反函数为f-1(x),数列{an}满足:a1=2,an+1=f-1(an) (n∈N*).
(1)求数列{an}的通项公式;
(2)设函数g(x)=f-1(x)(1+x)2在点(n,g(n))(n∈N*)处的切线在Y轴上的截距为bn,求数列{bn}的通项公式;
(3)在数列{bn+
}中,仅当n=5时,bn+
取最大值,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013年山东省高考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com