精英家教网 > 高中数学 > 题目详情
12.己知向量|$\overrightarrow{AB}$|=2,|$\overrightarrow{CD}$|=1,且|$\overrightarrow{AB}$-2$\overrightarrow{CD}$|=2$\sqrt{3}$丨,则向量$\overrightarrow{AB}$和$\overrightarrow{CD}$的夹角为120°.

分析 根据条件,对$|\overrightarrow{AB}-2\overrightarrow{CD}|=2\sqrt{3}$两边平方即可求出$\overrightarrow{AB}•\overrightarrow{CD}$的值,从而可求出$cos<\overrightarrow{AB},\overrightarrow{CD}>$的值,进而得出向量$\overrightarrow{AB},\overrightarrow{CD}$的夹角.

解答 解:据条件:
$(\overrightarrow{AB}-2\overrightarrow{CD})^{2}$
=${\overrightarrow{AB}}^{2}-4\overrightarrow{AB}•\overrightarrow{CD}+4{\overrightarrow{CD}}^{2}$
=$4-4\overrightarrow{AB}•\overrightarrow{CD}+4$
=12;
∴$\overrightarrow{AB}•\overrightarrow{CD}=-1$;
∴$cos<\overrightarrow{AB},\overrightarrow{CD}>=\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}||\overrightarrow{CD}|}=-\frac{1}{2}$;
∴向量$\overrightarrow{AB},\overrightarrow{CD}$的夹角为120°.
故答案为:120°.

点评 考查向量数量积的运算及计算公式,向量夹角的余弦公式,以及向量夹角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{{{4^x}+a}}{{{2^{x+1}}}}$,h(x)=2f(x)-ax-b.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若f(x)为奇函数,且h(x)在[-1,1]有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足an=(2n+m)+(-1)n(3n-2)(m∈N*,m与n无关),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1对任意的m∈N*恒成立,则正实数k的取值范围为[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x3-ax在(-∞,-1]上是单调函数,则a的取值范围是(  )
A.(3,+∞)B.[3,+∞)C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确的是(  )
A.?x0∈R,sinx0+cos0=$\frac{3}{2}$
B.已知X服从正态分布N(0,σ2),且p(-2<X≤2)=0.6,则P(X>2)=0.2
C.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
D.命题“?x∈R,x2-x+1>0”的否定是“?x0∈R,x2-x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|log2x≥0},B={x|log2(x-1)≤2},则集合A∩B=(  )
A.{1,2,3}B.{1,3}C.(1,3]D.(1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对定义在R上的连续非常函数f(x)、g(x)、h(x),如果g2(x)=f(x)•h(x)总成立,则称f(x)、g(x)、h(x) 成等比函数,若f(x)、g(x)、h(x) 成等比函数,则下列说法中正确的个数是(  )
①若f(x)、h(x)都是增函数,则g(x)是增函数
②若f(x)、h(x)都是减函数.则g(x)是减函数
③若f(x)、h(x)都是偶函数,则g(x)是偶函数;
④若f(x)、h(x)都是奇函数.则g(x)是奇函数.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=|lnx|,若f(m)=f(n)(m>n>0),则$\frac{2}{m+1}$+$\frac{2}{n+1}$=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:直线AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值;
(Ⅲ)当$\overrightarrow{AE}$=λ$\overrightarrow{A{B}_{1}}$时,异面直线DE和AC所成的角为90°,求CE的长.

查看答案和解析>>

同步练习册答案