精英家教网 > 高中数学 > 题目详情

 设为实数,函数。 

     (Ⅰ)求的极值;

(Ⅱ)当时,恒有,求的取值范围。

(Ⅰ)由题意知的定义域为,令

     列表如下:

  -

0

+

0

  

极小值

极大值

由上表可知。      

(Ⅱ)由

,由(Ⅰ)可知:当时,时,

,所以         

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为实数,函数

(1)讨论的奇偶性;

(2)求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

为实数,函数.

(1)若,求的取值范围;

(2)若写出的单调递减区间;

(3)设函数求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆乌鲁木齐市高三上学期第一次月考理科数学试卷(解析版) 题型:解答题

为实数,函数

(1)若,求的取值范围     (2)求的最小值     

 (3)设函数,直接写出(不需要给出演算步骤)不等式的解集。

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题分项版理科数学之专题十三导数 题型:解答题

(本小题满分12分)

    设为实数,函数

    (Ⅰ)求的单调区间与极值;

(Ⅱ)求证:当时,

 

查看答案和解析>>

同步练习册答案