精英家教网 > 高中数学 > 题目详情
18.$(a+\frac{1}{x}){(1+x)^4}$展开式中x2的系数为0,则a=(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

分析 把(1+x)4按照二项式定理展开,即可求得$(a+\frac{1}{x}){(1+x)^4}$的展开式中x2的系数,再根据展开式中x2的系数为0,求得实数a的值.

解答 解:∵$(a+\frac{1}{x}){(1+x)^4}$=(a+$\frac{1}{x}$)(1+4x+6x2+4x3+x4 ),
∴展开式中x2的系数为6a+4=0,求得a=-$\frac{2}{3}$,
故选B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图及尺寸如图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的体积为(  )
A.$\frac{4}{3}$πB.$\frac{4\sqrt{2}}{3}$πC.D.4$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,下顶点为B,直线BF2的方程为x-y-b=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,P到直线BF2的距离为$\sqrt{2}$b,且三角形PF1F2的面积为$\frac{1}{3}$.
(1)求椭圆C的方程;
(2)若斜率为k的直线l与椭圆C相切,过焦点F1,F2分别作F1M⊥l,F2M⊥l,垂足分别为M,N,求(|F1M|+|F2N|)•|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},满足a1=b1=1,an+1=bn+n,${b_{n+1}}={a_n}+{({-1})^{n+1}}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求证:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2n}}}}<\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f(x)是R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[a,a+2],不等式f(x+a)≥3f(x)恒成立,则实数a的取值范围是[$2+2\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的标准方程为x2+(y-1)2=5,直线l:x=y+m(m∈R)交圆C于点A,B,点O为坐标原点.
(1)当m=-1时,求△OAB的面积;
(2)是否存在正实数m,使得△OAB为锐角三角形,若存在,试求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a为实常数,函数f(x)=lnx-ax+1.
(1)若f(x)在(1,+∞)是减函数,求实数a的取值范围;
(2)当0<a<1时函数f(x)有两个不同的零点x1,x2(x1<x2),求证:$\frac{1}{e}$<x1<1且x1+x2>2.(注:e为自然对数的底数);
(3)证明$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{n+1}$<$\frac{{n}^{2}-n}{4}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果满足∠A=60°,BC=6,AB=k的锐角△ABC有且只有一个,那么实数k的取值范围是$(2\sqrt{3},4\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在锐角△ABC中,A=60°.
(1)求 sinA+sinB+sinC的取值范围;
(2)求 sinAsinBsinC的取值范围.

查看答案和解析>>

同步练习册答案