精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式=1(a>b>0)的短轴长为2数学公式,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足数学公式,若λ∈[数学公式],求直线AB的斜率的取值范围.

解:(1)由已知b=,c=1,a=2,所以椭圆的方程
(2),D,A,B三点共线,D(-4,0),且直AB的斜率一定存在,所以AB的方程y=k(x+4),
与椭圆的方联立得(3+4k2)y2-24ky+36k2=0
△>0,k2
A(x1,y1),B(x2,y2),y1+y2=,y1y2=
得:(x1+4,y1)=λ(x2+4,y2),y1=λy2②.
将②式代入①式,消去y2得:
当λ∈[],时,是减函数

解得
∴直线AB的斜率的取值范围是
分析:(1)先由短轴长为2求出b,再由右焦点F与抛物线y2=4x的焦点重合c,从而得到长半半轴长a,写出椭圆的标准方程.
(2)先AB的方程y=k(x+4),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量坐标公式利用函数的单调性即可求得直线AB的斜率的取值范围,从而解决问题.
点评:本题主要考查了椭圆的定义和标准方程、直线与圆锥曲线的综合问题、平面向量的运算等.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,突出考查了数形结合、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案