精英家教网 > 高中数学 > 题目详情
精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1
(2)面BDC1∥面AB1D1
分析:(1)由题意连接A1C1,先证明A1ACC1是平行四边形得A1C1∥AC且A1C1=AC,再证AOC1O1是平行四边形,然后利用直线与平面平行的判定定理进行证明;
(2)因为AB∥CD∥D′C′,加上AB=CD=D′C′,可证ABC′D′是平行四边形,同理可证C′D∥平面AB′D′,从而求证.
解答:证明:(1)连接A1C1,设A1C1∩B1D1=O1
连接AO1,∵ABCD-A1B1C1D1是正方体
∴A1ACC1是平行四边形
∴A1C1∥AC且A1C1=AC
又O1,O分别是A1C1,AC的中点,
∴O1C1∥AO且O1C1=AO
∴AOC1O1是平行四边形
∴C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1
∴C1O∥面AB1D1
(2)证明:
AB∥DC∥D′C′
AB=DC=D′C′
?ABC′D′
是平行四边形,
?
BC′∥AD′
BC′?平面AB′D′
AD′?平面AB′D′
BC′∥平面AB′D′
?同理,C′D∥平面AB′D′
BC′∩C′D=C′
?平面C′DB∥平面AB′D′.
点评:此题考查直线与平面平行的判断及平面与平面平行的判断,此类问题先证明两个面平行,再证直线和面平行,这种做题思想要记住.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案