精英家教网 > 高中数学 > 题目详情
函数f(x)=
x2+5
x2+4
的最小值为(  )
A、2
B、
5
2
C、1
D、不存在
分析:要求函数 f(x)=
x2+5
x2+4
的最小值,本题形式可以变为用基本不等式求函数最值,用此法时要注意验证等号成立的条件是不是具备.
解答:解:由于 f(x)=
x2+5
x2+4
=
(
x2+4
)
2
+1
x2+4
=
x2+4
+
1
x2+4

令t=
x2+4
,则t≥2,f(t)=t+
1
t
在(2,+∞)上单调递增,
f(x)=
x2+5
x2+4
的最小值为:
5
2

故选B.
点评:本题的考点是函数的最值及其几何意义,考查分式形函数求最值的方法,本题分子次数高于分母次数,故将其恒等变形为可以用基本不等式求最值的形式,求最值,这是解此类题求最值优先选用的方法,本题有一易错点,那就是忘记验证等号成立的条件是否在定义域内,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1x-1
,其图象在点(0,-1)处的切线为l.
(I)求l的方程;
(II)求与l平行的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,则f(-1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),则实数a的取值范围是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)设函数f(x)=-x2+2ax+m,g(x)=
ax

(I)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;
(II)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+∞)内的最大值为-4,求实数m的值.

查看答案和解析>>

同步练习册答案