精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(x2+ax+2)
(1)若定义域为R,求a范围
(2)若值域为R,求a范围.
分析:(1)根据函数f(x)=loga(x2+ax+2)的定义域为R,说明对任意实数x,对数式的真数恒大于0,而真数是二次三项式,由其对应的二次方程的判别式小于0即可求得a的取值范围,同时兼顾对数式的底数有意义;
(2)根据函数f(x)=loga(x2+ax+2)的值域为R,说明对数式的真数能取到大于0的所有实数,则真数上的二次三项式对应的抛物线顶点应在x轴上或其下方,故其对应的二次方程的判别式应大于等于0,由此求解a的取值范围.
解答:解:(1)由函数f(x)=loga(x2+ax+2)的定义域为R,
说明x2+ax+2>0对任意实数恒成立,
则不等式x2+ax+2>0对应二次方程的△=a2-8<0,即-2
2
<a<2
2

又a>0且a≠1,所以,0<a<2
2
,且a≠1.
故使函数f(x)=loga(x2+ax+2)的定义域为R的a的取值范围是(0,1)∪(1,2
2
);
(2)函数f(x)=loga(x2+ax+2)的值域为R,
说明x2+ax+2能取到大于0的所有实数,
则不等式x2+ax+2>0对应二次方程的△=a2-8≥0,解得:a≤-2
2
a≥2
2

又a>0且a≠1,所以,使函数f(x)=loga(x2+ax+2)的值域为R的a的取值范围是(2
2
,+∞).
点评:本题考查了函数的定义域,函数的值域,考查了数学转化思想,解答此题的关键是由函数值域是R,得到真数的二次三项式的判别式大于等于0,是基础题,解答时易忽略底数的限制条件,也是易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案