精英家教网 > 高中数学 > 题目详情
已知PA⊥平面ABCD.ABCD为矩形AB=a,BC=2.Q为BC上一点.求a为何值时PQ⊥QD?

解:设BQ=x,则QC=2-x,连结AQ.

∵PA⊥面ABCD,要使PQ⊥QD,

    只要AQ⊥QD即可.

    由△ABQ∽△CDQ得

=,∴x2-2x+a2=0,

Δ=4-4a2≥0,∴0<a≤1.

    故a∈(0,1]时,PQ⊥QD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,三棱锥P-ABC中,已知PA⊥平面ABC,PA=3,PB=PC=BC=6,求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求点D到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分别是BC,AP的中点.
(1)求异面直线AC与ED所成的角的大小;
(2)求△PDE绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.
(1)求PD与平面PAC所成的角的大小;
(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)如图,三棱锥P-ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点.
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若平面ADE⊥平面PBC,求PA的长.

查看答案和解析>>

同步练习册答案