精英家教网 > 高中数学 > 题目详情
(2013•宁波二模)如图,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D,E分别为CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心
(Ⅰ)求证:DE∥平面ACB;
(Ⅱ)求A1B与平面ABD所成角的正弦值.
分析:(Ⅰ)求证直线DE平行于平面ABC,可利用线面平行的判定定理,因此想到在平面ABC内找到一条与DE平行的直线即可,根据E为A1B的中点,所以可取AB的中点F,根据三角形中位线知识证出四边形DEFC为平行四边形,从而得到DE∥CF,则问题得证;
(Ⅱ)连接DF,在平面EFD内过E作EH⊥DF于H,通过证明AB垂直于平面EFD得到AB⊥EH,从而说明EH垂直于平面ABD,得到∠EBH为A1B与平面ABD所成角,在直角三角形EHB中可求该角的正弦值.
解答:(Ⅰ)证明:如图,取AB中点F,连接EF,FC,
又因为E为A1B的中点,
所以EF∥A1A,EF=
1
2
A1A

又DC∥A1A,DC=
1
2
A1A

所以四边形DEFC为平行四边形
则ED∥CF,因为ED?平面ABC,FC?平面ABC,
所以ED∥平面ABC;
(Ⅱ)解:过E作EH⊥DF于H,连结HB,
由CC1⊥平面ABC,AB?平面ABC,所以CC1⊥AB,
由AC=BC,AF=FB,所以AB⊥CF,
又CF∩CD=C,CF,CD?平面DEFC,
所以AB⊥平面DEFC,EH?平面DEFC,所以AB⊥EH,
又EH⊥DF,DF∩AB=F,AB,DF?平面ABD,所以EH⊥平面ABD,
所以∠EBH为A1B与平面ABD所成角的平面角,
因为H为△ABD的重心,在Rt△DEF中,EF2=FH•FD=
1
3
FD2=1

所以得FD=
3
,HF=
3
3
,EH=
6
3
,CF=
2
,FB=
2
,EB=
3

sin∠EBH=
EH
EB
=
2
3
,所以A1B与平面ABD所成角的正弦值为
2
3
点评:本题考查了直线与平面平行的判定,考查了直线与平面所成的角,解答此题的关键是创设线面平行的条件,求解线面角时,找角是关键,必须注意的是找出的角要落在易于求解的三角形中.此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当a=-
1
4
时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组
x≥1
y≤x-1
所表示的区域内,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图是某学校抽取的n个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3个小组的频数为18,则的值n是
48
48

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知两非零向量
a
b
,则“
a
b
=|
a
||
b
|”是“
a
b
共线”的(  )

查看答案和解析>>

同步练习册答案