精英家教网 > 高中数学 > 题目详情

如图3,在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.

 (1)求证:A1C1⊥AB;

(2)求点B1到平面ABC1的距离.

(1)见解析    (2)  d=


解析:

(1)证明:连结A1B,则A1B⊥AB1.又∵AB1⊥BC1,∴AB1⊥平面A1BC1.

∴AB1⊥A1C1.又∵A1C1⊥BB1,∴A1C1⊥平面ABB1.∴A1C1⊥AB.

(2)解:由(1)知AB⊥AC,∵AB⊥AC1,又∵AB=1,BC=2,∴AC=,AC1=2.

=1.设所求距离为d,∴.

SABC1·d=·A1C1.=·1·d=··.     ∴d=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(1)求证:CF⊥平面ABB1
(2)当E是棱CC1中点时,求证:CF∥平面AEB1
(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABCA1B1C1中,∠ABC=90°,D为棱AC的中点,且AB=BC=BB1=a.

(1)求证:AB1∥平面BC1D;

(2)求异面直线AB1BC1所成的角;

(3)求点A到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

同步练习册答案