精英家教网 > 高中数学 > 题目详情

已知点(x,y)位于线性约束条件数学公式所表示的区域内(包括边界),则目标函数z=2x+y的最大值是________.


分析:先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到z=2x+y的最大值即可.
解答:先根据约束条件画出可行域,
设z=2x+y,
将最大值转化为y轴上的截距,
当直线z=2x+y经过点B()时,z最大,
最大值为:
故答案为:
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(x1,x12)、B(x2,x22)是函数y=x2的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
x
2
1
+
x
2
2
2
>(
x1+x2
2
)2
成立.运用类比思想方法可知,若点A(x1,lgx1)、B(x2,lgx2)是函数y=lgx(x∈R+)的图象上的不同两点,则类似地有
 
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点B是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,
BP
BM
=9,若点P的坐标为(0,t),则t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区一模)已知点(x,y)位于线性约束条件
y≤2x
x+y≤3
y≥
1
2
x+
1
2
所表示的区域内(包括边界),则目标函数z=2x+y的最大值是
14
3
14
3

查看答案和解析>>

科目:高中数学 来源:2010年上海市黄浦区高考数学一模试卷(文科)(解析版) 题型:解答题

已知点(x,y)位于线性约束条件所表示的区域内(包括边界),则目标函数z=2x+y的最大值是   

查看答案和解析>>

同步练习册答案