精英家教网 > 高中数学 > 题目详情

在等比数列的前100项的和为(    )

       A.  B.  C.  D.

A.


解析:

由等比数列满足,从而,选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知数列{an}满足:a1=1,an+1=
1
2
an+n,n为奇数
an-2n,n为偶数

(1)求a2,a3
(2)设bn=a2n-2,n∈N*,求证{bn} 是等比数列,并求其通项公式;
(3)在(2)条件下,求数列{an} 前100项中的所有偶数项的和S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数l和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,n≥1.
(1)求数列{an}的通项公式;
(2)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在等比数列{an}中,a1+a3=101,a2+a4=1010,令bn=lgan,则{bn}的前100项和等于


  1. A.
    2475
  2. B.
    4950
  3. C.
    2525
  4. D.
    5050

查看答案和解析>>

同步练习册答案