精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mln(x-1)+(m-1)x,m∈R是常数.
(1)若m=
1
2
,求函数f(x)的单调区间;
(2)若函数f(x)存在最大值,求m的取值范围;
(3)若对函数f(x)定义域内任意x1、x2(x1≠x2),
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立,求m的取值范围.
分析:(1)先确定函数的定义域,然后求出函数的导函数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间.
(2)根据函数的增减区间确定函数的最大值,从而解出m的取值范围.
(3)由
f(x1)+f(x2)
2
>f(
x1+x2
2
)
mln(x1-1)+mln(x2-1)
2
>mln(
x1+x2
2
-1)
,利用基本不等式得出
x1+x2
2
-1=
(x1-1)+(x2-1)
2
(x1-1)(x2-1)

再利用对数函数的性质,得出所以ln(
x1+x2
2
-1)>ln
(x1-1)(x2-1)
,从而m只需小于0即可.
解答:解:(1)f(x)的定义域为(1,+∞)…(1分)
m=
1
2
时,f(x)=
1
2
ln(x-1)-
1
2
x
f/(x)=
1
2(x-1)
-
1
2
=
2-x
2(x-1)
…(2分)
解f′(x)=0得x=2.
当x∈(1,2)时,f′(x)>0,即f(x)在(1,2)单调递增…(3分);
当x∈(2,+∞)时,f′(x)<0,即f(x)在(2,+∞)单调递减…(4分).
(2)f/(x)=
m
x-1
+(m-1)=
(m-1)x+1
x-1

若m≥1,则f′(x)>0,f(x)单调递增,不存在最大值…(5分)
若m≤0,则f′(x)<0,f(x)单调递减,不存在最大值…(6分)
若0<m<1,由f′(x)=0得x=
1
1-m

x∈(1,
1
1-m
)
时,f′(x)>0,f(x)单调递增,
x∈(
1
1-m
,+∞)
时,f′(x)<0,f(x)单调递减…(8分),
所以f(x)在x=
1
1-m
取得最大值,所求m的取值范围为(0,1)…(9分)
(3)由
f(x1)+f(x2)
2
>f(
x1+x2
2
)
mln(x1-1)+mln(x2-1)
2
>mln(
x1+x2
2
-1)
…(10分),
依题意x1-1>0,x2-1>0且x1-1≠x2-1,所以
x1+x2
2
-1=
(x1-1)+(x2-1)
2
(x1-1)(x2-1)
…(11分),
y=lnx是增函数,所以ln(
x1+x2
2
-1)>ln
(x1-1)(x2-1)
…(12分)
=
1
2
ln[(x1-1)(x2-1)]=
1
2
[ln(x1-1)+ln(x2-1)]
…(13分),
所求m的取值范围为(-∞,0)…(14分).
点评:本题主要考查了利用导数研究函数的极值,以及函数单调区间等有关基础知识,应用导数研究函数单调性的方法及推理和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案