精英家教网 > 高中数学 > 题目详情
已知双曲线,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.
【答案】分析:(1)先设P(x1,y1)是双曲线上任意一点,再求出双曲线的渐近线方程,根据点到线的距离公式分别表示出点P(x1,y1)到两条渐近线的距离,然后两距离再相乘整理即可得到答案.
(2)先设A的坐标为(x,y),根据两点间的距离公式表示出PA|2并根据双曲线方程为,用x表示出y代入整理成二次函数的形式,即可得到|PA|的最小值.
解答:解:
(1)设P(x1,y1)是双曲线上任意一点,
该双曲的两条渐近线方程分别是x-2y=0和x+2y=0.
点P(x1,y1)到两条渐近线的距离分别是
它们的乘积是
点P到双曲线的两条渐线的距离的乘积是一个常数.
(2)设P的坐标为(x,y),则|PA|2=(x-3)2+y2==
∵|x|≥2,∴当时,|PA|2的最小值为
即|PA|的最小值为
点评:本题主要考查双曲线的基本性质--渐近线方程,考查点到线的距离公式和两点间的距离公式.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年北京四中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知双曲线,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省深圳市高级中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知双曲线,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:8.7 双曲线(2)(解析版) 题型:解答题

已知双曲线,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源:广东省高考数学一轮复习:9.4 双曲线的几何性质(解析版) 题型:解答题

已知双曲线,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

同步练习册答案