精英家教网 > 高中数学 > 题目详情

已知,求证:3sin2α=-4cos2α

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,设y=f(x)
(Ⅰ)求证:tan(α+β)=2tanα;   (Ⅱ)求f(x)的解析式;
(Ⅲ)已知数列an满足an=
1f(n)
,问数列是否存在最小项,若有求出此项,若无说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β是锐角,α+β≠
π2
,且满足3sinβ=sin(2α+β).
(1)求证:tan(α+β)=2tanα
(2)求tanβ的最大值,并求取得最大值时tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(2α+β)=3sinβ,β≠kπ+
π
2
,α+β≠kπ+
π
2
(k∈Z)

求证:tan(α+β)=2tanβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)定义向量
OM
=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为
OM
=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设g(x)=3sin(x+
π
2
)+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x-2)2+y2=1上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.

查看答案和解析>>

同步练习册答案