科目:高中数学 来源: 题型:
若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1).
(1)求f(log2x)的最小值及对应的x值;
(2)x取何值时,f(log2x)>f(1),且log2f(x)<f(1).
查看答案和解析>>
科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题
已知函数f(x)(x∈R)满足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}为等比数列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)证明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省武汉市高三第5次月考数学理卷 题型:选择题
函数y=3x+1(-1≤x<0)的反函数是( )
A.y=1+log3x(x>0) B.y=-1+log3x(x>0)
C.y=-1+log3x(1≤x<3) D.y=-1+log3x(-1≤x<3)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省梅州市高三年级10月月考文科数学试卷 题型:选择题
若集合M={ x |-3<x<1, x∈R },N={ x |-1≤x≤2, x∈Z },则M∩N= ( )
A.{0} B.{-1,0} C.{-1,0,1} D.{-2,-1,0,1,2}
查看答案和解析>>
科目:高中数学 来源:2009-2010学年度新课标高三下学期数学单元测试4-文科 题型:选择题
若集合A={y|y=
,-1≤x≤1},B={y|y=
,x≤0},则A∩B等于 (
)
A.(-∞,-1) B.[-1,1] C.
D. {1}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com