精英家教网 > 高中数学 > 题目详情
证明不等式:

1+++…+<2nN*).

证明:(1)当n=1时有1<2,命题显然成立.

(2)假设当n=k时,命题成立,

即1+++…+<2成立.

n=k+1时,

1+++…++

<2+ =

=2.

n=k+1时,不等式成立.

由(1)(2)可知命题对所有的正整数都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式“
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>2)”时的过程中,由n=k到n=k+1时,不等式的左边(  )
A、增加了一项
1
2(k+1)
B、增加了两项
1
2k+1
+
1
2(k+1)
C、增加了两项
1
2k+1
+
1
2(k+1)
,又减少了一项
1
k+1
D、增加了一项
1
2(k+1)
,又减少了一项
1
k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
1
2
(n>1,n?N*)的过程中,用n=k+1时左边的代数式减去n=k时左边的代数式的结果为(  )
A、
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
C、
1
2k+1
-
1
2(k+1)
D、
1
2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③④
②③④
(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步练习册答案