20£®Ä³Ð£Éè¼ÆÁËÒ»¸öʵÑéѧ¿ÆµÄʵÑ鿼²é·½°¸£º¿¼Éú´Ó6µÀ±¸Ñ¡ÌâÖÐÒ»´ÎÐÔËæ»ú³éÈ¡3Ì⣬°´ÕÕÌâĿҪÇó¶ÀÁ¢Íê³ÉÈ«²¿ÊµÑé²Ù×÷£®¹æ¶¨£ºÖÁÉÙÕýÈ·Íê³ÉÆäÖÐ2Ìâ»ñµÃѧ·Ö2·Ö£¬±ã¿Éͨ¹ý¿¼²ì£®ÒÑÖª6µÀ±¸Ñ¡ÌâÖп¼Éú¼×ÓÐ4ÌâÄÜÕýÈ·Íê³É£º¿¼ÉúÒÒÿÌâÕýÈ·Íê³ÉµÄ¸ÅÂʶ¼ÊÇ$\frac{2}{3}$£¬ÇÒÿÌâÕýÈ·Íê³ÉÓë·ñ»¥²»Ó°Ï죮Çó£º
£¨¢ñ£©·Ö±ðд³ö¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢¼ÆËãÊýѧÆÚÍû£»
£¨¢ò£©ÇëÄãÅжÏÁ½¿¼ÉúµÄʵÑé²Ù×÷ѧ¿ÆÄÜÁ¦£¬±È½ÏËûÃÇÄÜͨ¹ý±¾´Î¿¼²éµÄ¿ÉÄÜÐÔ´óС£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªµÃ¼×ÕýÈ·Íê³ÉÌâÊýXµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýXµÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£»ÒÒÕýÈ·Íê³ÉÌâÊýYµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÇÒY¡«B£¨3£¬$\frac{2}{3}$£©£¬ÓÉ´ËÄÜÇó³öÒÒ¿¼ÉúÕýÈ·Íê³ÉÌâÊýYµÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨¢ò£©E£¨X£©=E£¨Y£©=2£¬Çó³öD£¨X£©ºÍD£¨Y£©£¬µÃµ½D£¨X£©£¼D£¨Y£©£¬ÔÙÇó³öP£¨X¡Ý2£©ºÍP£¨Y¡Ý2£©£¬µÃµ½P£¨¦Î¡Ý2£©£¾P£¨¦Ç¡Ý2£©£¬ÓÉ´ËÅжϼ׵ÄʵÑé²Ù×÷ÄÜÁ¦Ç¿£®

½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖªµÃ¼×ÕýÈ·Íê³ÉÌâÊýXµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬
P£¨X=1£©=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
P£¨X=2£©=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$£¬
P£¨X=3£©=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
¡à¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýXµÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º

 X 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
EX=$1¡Á\frac{1}{5}+2¡Á\frac{3}{5}+3¡Á\frac{1}{5}$=2£®
ÒÒÕýÈ·Íê³ÉÌâÊýYµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬ÇÒY¡«B£¨3£¬$\frac{2}{3}$£©£¬
P£¨Y=0£©=${C}_{3}^{0}£¨\frac{1}{3}£©^{3}$=$\frac{1}{27}$£¬
P£¨Y=1£©=${C}_{3}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©^{2}$=$\frac{6}{27}$£¬
P£¨Y=2£©=${C}_{3}^{2}£¨\frac{2}{3}£©^{2}£¨\frac{1}{3}£©$=$\frac{12}{27}$£¬
P£¨Y=3£©=${C}_{3}^{3}£¨\frac{2}{3}£©^{3}$=$\frac{8}{27}$£¬
¡à¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýYµÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º
 Y 0 1 2 3
 P $\frac{1}{27}$ $\frac{6}{27}$ $\frac{12}{27}$ $\frac{8}{27}$
E£¨Y£©=$0¡Á\frac{1}{27}+1¡Á\frac{6}{27}+2¡Á\frac{12}{27}+3¡Á\frac{8}{27}$=2£®
£¨¢ò£©¡ßE£¨X£©=E£¨Y£©=2£¬
D£¨X£©=£¨1-2£©2¡Á$\frac{1}{5}$+£¨2-2£©2¡Á$\frac{3}{5}$+£¨3-2£©2¡Á$\frac{1}{5}$=$\frac{2}{5}$£¬
D£¨Y£©=$3¡Á\frac{2}{3}¡Á\frac{1}{3}$=$\frac{2}{3}$£¬
D£¨X£©£¼D£¨Y£©£¬
¡ßP£¨X¡Ý2£©=$\frac{3}{5}+\frac{1}{5}$=$\frac{4}{5}$£¬
P£¨Y¡Ý2£©=$\frac{12}{27}+\frac{8}{27}$=$\frac{20}{27}$£¬
¡àP£¨¦Î¡Ý2£©£¾P£¨¦Ç¡Ý2£©
¢Ù´Ó×ö¶ÔÌâÊýµÄÊýѧÆÚÍû¿¼²é£¬Á½ÈËˮƽÏ൱£»´Ó×ö¶ÔÌâÊýµÄ·½²î¿¼²é£¬¼×½ÏÎȶ¨£»
¢Ú´ÓÖÁÉÙÍê³É2ÌâµÄ¸ÅÂÊ¿¼²é£¬¼×»ñµÃͨ¹ýµÄ¿ÉÄÜÐÔ´ó£¬
Òò´Ë£¬¿ÉÒÔÅжϼ׵ÄʵÑé²Ù×÷ÄÜÁ¦Ç¿£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶þÏî·Ö²¼µÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÈýÀâ×¶P-ABCµÄ¸÷¶¥µã¶¼ÔÚͬһÇòµÄÃæÉÏ£¬ÇÒPA¡ÍÆ½ÃæABC£¬ÈôÇòOµÄÌå»ýΪ$\frac{20\sqrt{5}¦Ð}{3}$£¨ÇòµÄÌå»ý¹«Ê½Îª$\frac{4¦Ð}{3}$R3£¬ÆäÖÐRΪÇòµÄ°ë¾¶£©£¬AB=2£¬AC=1£¬¡ÏBAC=60¡ã£¬ÔòÈýÀâ×¶P-ABCµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{3}$B£®$\frac{2\sqrt{3}}{3}$C£®$\sqrt{3}$D£®$\frac{4\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬Å×ÎïÏßC2£ºx2=4yµÄ½¹µãFÊÇC1µÄÒ»¸ö¶¥µã£®
£¨I£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨II£©¹ýµãFÇÒбÂÊΪkµÄÖ±Ïßl½»ÍÖÔ²C1ÓÚÁíÒ»µãD£¬½»Å×ÎïÏßC2ÓÚA£¬BÁ½µã£¬Ïß¶ÎDFµÄÖеãΪM£¬Ö±ÏßOM½»ÍÖÔ²C1ÓÚP£¬QÁ½µã£¬¼ÇÖ±ÏßOMµÄбÂÊΪk'£®
£¨i£©ÇóÖ¤£ºk•k'=-$\frac{1}{4}$£»
£¨ii£©¡÷PDFµÄÃæ»ýΪS1£¬¡÷QABµÄÃæ»ýΪÊÇS2£¬ÈôS1•S2=¦Ëk2£¬ÇóʵÊý¦ËµÄ×î´óÖµ¼°È¡µÃ×î´óֵʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÅ×ÎïÏßC£ºx2=4y£¬µãPÊÇCµÄ×¼ÏßlÉϵ͝µã£¬¹ýµãP×÷CµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬Ôò¡÷AOBÃæ»ýµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2C£®2$\sqrt{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\sqrt{3}$cos¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨sin¦Øx£¬cos¦Øx£©£¨¦Ø£¾0£©£¬º¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨¢ñ£©Ç󦨵ÄÖµ¼°º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Ôڶ۽ǡ÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªa=1£¬b=$\sqrt{3}$£¬µ±f£¨A£©È¡µÃ×î´óֵʱ£¬Çó±ßc£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªA¡¢F·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×󶥵㡢ÓÒ½¹µã£¬µãPΪÍÖÔ²CÉÏÒ»¶¯µã£¬µ±PF¡ÍxÖáʱ£¬AF=2PF£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÈôÍÖÔ²C´æÔÚµãQ£¬Ê¹µÃËıßÐÎAOPQÊÇÆ½ÐÐËıßÐΣ¨µãPÔÚµÚÒ»ÏóÏÞ£©£¬ÇóÖ±ÏßAPÓëOQµÄбÂÊÖ®»ý£»
£¨3£©¼ÇÔ²O£ºx2+y2=$\frac{ab}{{a}^{2}+{b}^{2}}$ΪÍÖÔ²CµÄ¡°¹ØÁªÔ²¡±£®Èôb=$\sqrt{3}$£¬¹ýµãP×÷ÍÖÔ²CµÄ¡°¹ØÁªÔ²¡±µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM¡¢N£¬Ö±ÏßMNµÄºá¡¢×ݽؾà·Ö±ðΪm¡¢n£¬ÇóÖ¤£º$\frac{3}{{m}^{2}}$+$\frac{4}{{n}^{2}}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\frac{t{x}^{2}-1}{x}$-£¨t+1£©lnx£¬t¡ÊR£¬ÆäÖÐt¡ÊR£®
£¨1£©Èôt=1£¬ÇóÖ¤£ºx£¾1£¬f£¨x£©£¾0³ÉÁ¢£»
£¨2£©Èôt¡Ý1£¬ÇÒf£¨x£©£¾1ÔÚÇø¼ä[$\frac{1}{e}$£¬e]ÉϺã³ÉÁ¢£¬ÇótµÄȡֵ·¶Î§£»
£¨3£©Èôt£¾$\frac{1}{e}$£¬ÅжϺ¯Êýg£¨x£©=x[f£¨x£©+t+1]µÄÁãµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Îª¼Ó¿ìÐÂÄÜÔ´Æû³µ²úÒµ·¢Õ¹£¬Íƽø½ÚÄܼõÅÅ£¬¹ú¼Ò¶ÔÏû·ÑÕß¹ºÂòÐÂÄÜÔ´Æû³µ¸øÓè²¹Ìù£¬ÆäÖжԴ¿µç¶¯³ËÓóµ²¹Ìù±ê×¼Èç±í£º
ÐÂÄÜÔ´Æû³µ²¹Ìù±ê×¼
³µÁ¾ÀàÐÍÐøÊ»Àï³ÌR£¨¹«À
100¡ÜR£¼180180¡ÜR£¼280£¼280
´¿µç¶¯³ËÓóµ2.5ÍòÔª/Á¾4ÍòÔª/Á¾6ÍòÔª/Á¾
ijУÑо¿ÐÔѧϰС×飬´ÓÆû³µÊг¡ÉÏËæ»úѡȡÁËMÁ¾´¿µç¶¯³ËÓ󵣬¸ù¾ÝÆäÐøÊ»Àï³ÌR£¨µ¥´Î³äµçºóÄÜÐÐÊ»µÄ×î´óÀï³Ì£©×÷³öÁËÆµÂÊÓëÆµÊýµÄͳ¼Æ±í£º
·Ö×鯵ÊýƵÂÊ
100¡ÜR£¼18030.3
180¡ÜR£¼2806x
R¡Ý280yz
ºÏ¼ÆM1
£¨1£©Çóx¡¢y¡¢z¡¢MµÄÖµ£»
£¨2£©Èô´ÓÕâMÁ¾´¿µç¶¯³ËÓóµÈÎÑ¡3Á¾£¬ÇóÑ¡µ½µÄ3Á¾³µÐøÊ»Àï³Ì¶¼²»µÍÓÚ180¹«ÀïµÄ¸ÅÂÊ£»
£¨3£©Èç¹ûÒÔÆµÂÊ×÷Ϊ¸ÅÂÊ£¬Èôij¼ÒÍ¥ÔÚijÆû³µÏúÊÛ¹«Ë¾¹ºÂòÁË2Á¾´¿µç¶¯³ËÓ󵣬Éè¸Ã¼ÒÍ¥»ñµÃµÄ²¹ÌùΪX£¨µ¥Î»£ºÍòÔª£©£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûÖµE£¨X£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèiÊÇÐéÊýµ¥Î»£¬Èô¸´Êý$a+\frac{2i}{1-i}$£¨a¡ÊR£©ÊÇ´¿ÐéÊý£¬Ôòa=£¨¡¡¡¡£©
A£®-1B£®1C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸