精英家教网 > 高中数学 > 题目详情
如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,E,F分别为棱AB,BC的中点,EF与BD相交于G.

(1)求证:平面B1EF⊥平面BDD1B1

(2)求点D1到平面B1EF的距离d.

(1)证明:EF⊥BD,又BB1⊥EF,

∴EF⊥面BB1D1D.而EF面B1EF,

∴面B1EF⊥面BDD1B.

(2)解析:由(1)知两面垂直,且交线为B1G.

过D1作D1H⊥B1G于H,则D1H即为D1到平面B1EF的距离d.

由B1G·d=B1D1·DD1得:

d=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.

(1)求证:AC1∥平面CNB1

(2)求四棱锥C-ANB1A1的体积.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

同步练习册答案