精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=n (3-bn),求数列{cn}的前n项和为Tn
【答案】分析:(1)利用数列中an与 Sn关系解决.
(2)结合(1)所求得出bn+1-bn=.利用累加法求bn
(3)由上求出cn=n (3-bn)=,利用错位相消法求和即可.
解答:解:(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.
因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.
两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an
因为an≠0,所以=( n∈N*).
所以数列{an}是首项a1=1,公比为的等比数列,an=( n∈N*).
(2)因为bn+1=bn+an( n=1,2,3,…),所以bn+1-bn=.从而有b2-b1=1,b3-b2=,b4-b3=,…,bn-bn-1=( n=2,3,…).
将这n-1个等式相加,得bn-b1=1+++…+==2-
又因为b1=1,所以bn=3-( n=1,2,3,…).
(3)因为cn=n (3-bn)=
所以Tn=.   ①
=.       ②
①-②,得=-
故Tn=-=8--=8-( n=1,2,3,…).
点评:本题考查利用数列中an与 Sn关系求数列通项,累加法、错位相消法求和,考查转化、变形构造、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案