精英家教网 > 高中数学 > 题目详情

已知函数数学公式则f(log32)的值为________.


分析:根据对数的定义判断出0<log32<1,再结合函数的对应法则,可得f(log32)=f(log32+2),将其代入解析式再用对数的运算性质进行化简,可求出它的值.
解答:∵1<2<3,∴log31<log32<log33,即0<log32<1
因此log32<1≤2且log32+1≤2
∴f(log32)=f(log32+1)=f(log32+2)
而log32+2∈(2,3],
所以f(log32+2)==×3-2=×=×=
故答案为:
点评:本题给出函数表达式,求log32对应的函数值,着重考查了函数的对应法则和对数的运算性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
).则a,b,c的大小关系是(  )
A、a>b>c
B、c>a>b
C、c>b>a
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)定义域为(-π,π),且函数y=f(x+1)的图象关于直线x=-1对称,当x∈(0,π)时,f(x)=-f′(
π
2
)sinx-πlnx
,(其中f′(x)是f(x)的导函数),若a=f(30.3),b=f(logπ3),c=f(log3
1
9
)
,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)已知函数y=f(x)的图象关于y轴对称,且当x∈(-∞,0)时有f(x)+xf'(x)<0成立a=(20.2)•f(20.2),b=(logπ3)•f(1ogπ3),c=(1og39)•f(1ong39),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)定义域为(-π,π),且函数y=f(x+1)的图象关于直线x=-1对称,当x∈(0,π)时,f(x)=-f′(
π
2
)sinx-πlnx,(其中f′(x)是f(x)的导函数),若a=f(30.3),b=f(logπ3),c=f(-log39),则a,b,c的大小关系是(  )
A、a>b>c
B、b>a>c
C、c>b>a
D、c>a>b

查看答案和解析>>

同步练习册答案