精英家教网 > 高中数学 > 题目详情

(文)满足f(π+x)=-f(x),f(-x)=f(x)的函数f(x)可能是

[  ]

A.cos2x

B.sinx

C.

D.cosx

答案:D
解析:

f(-x)=f(x)知应排除B、C;由f(x+π)=-f(x)知应排除A.故D正确.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知奇函数f(x)满足f(x+3)=f(x),当x∈(0,1)时,函数f(x)=3x-1,则f(log
1
3
36)
=
 

(理)已知点G是△ABC的重心,O是空间任意一点,若
OA
+
OB
+
OC
OG
,则λ的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设α∈(0,π),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)试用α表示f(
1
2
),并在f(
1
2
)时求出α的值;
(2)试用α表示f(
1
4
),并求出α的值;
(3)n∈N时,an=
1
2n
,求f(an),并猜测x∈[0,1]时,f(x)的表达式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若点A、B、C不能构成三角形,求实数m应满足的条件.
(2)若△ABC为直角三角形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=-f(x),当-1≤x<1时,f(x)=x3,则x∈[2,4]时y=f(x)的解析式是
 

查看答案和解析>>

同步练习册答案