(1)求f(x)的单调递减区间.
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:(1)f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(2)∵f(-2)=8+12-18+a=2+a,
f(2)=-8+12+18+a=22+a,
∴f(2)>f(-2).
由(1)知在(-1,3)上f′(x)>0,
∴f(x)在[-1,2]上单调递增.
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值.
于是有22+a=20,解得a=-2.
∴f(x)=-x3+3x2+9x-2.
∴f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
科目:高中数学 来源: 题型:
|
| 1 |
| π |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x-1 | x+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com