精英家教网 > 高中数学 > 题目详情

设f(x)为奇函数,且当x>0时,数学公式
(Ⅰ)求当x<0时,f(x)的解析表达式;
(Ⅱ)解不等式f(x)≤2.

解:(Ⅰ)设x<0时,

所以:当x<0时,f(x)=-log(-x).
(Ⅱ)由题意,得
所以不等式f(x)≤2的解集为:{x|x≥或-4≤x<0}
分析:(Ⅰ)直接设设x<0,则-x>0,代入所给解析式,再结合f(x)为奇函数即可求出结论;
(Ⅱ)直接根据分段函数的特点分段求解,再合并即可.
点评:本题主要考查函数奇偶性的应用以及不等式的解法.考查函数的基本性质,解决此类问题需要对函数奇偶性的性质掌握比较熟练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则xf(x)<0的解集为(  )
A、(-1,0)∪(2,+∞)B、(-∞,-2)∪(0,2)C、(-∞,-2)∪(2,+∞)D、(-2,0)∪(0,2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•闸北区一模)设f(x)为奇函数,且当x>0时,f(x)=log
12
x

(Ⅰ)求当x<0时,f(x)的解析表达式;
(Ⅱ)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为奇函数,当x>0时,f(x)=2x-1,则f(-2)=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为奇函数且在(-∞,0)内是减函数,f(-2)=0,且x•f(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(-1)=(  )

查看答案和解析>>

同步练习册答案