精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EFAB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.
精英家教网
(Ⅰ)取AD的中点N,连接MN,NF.
精英家教网

在△DAB中,M是BD的中点,N是AD的中点,
∴MNAB,MN=
1
2
AB

又∵EFAB,EF=
1
2
AB
,∴MNEF且MN=EF,∠CPD最大
∴四边形MNFE为平行四边形,可得EMFN.
又∵FN?平面ADF,EM?平面ADF,
∴EM平面ADF.…(6分)
(Ⅱ)假设在EB上存在一点P,使得∠CPD最大.
∵EB⊥平面ABD,CD?平面ABD,∴EB⊥CD.
又∵CD⊥BD,EB∩BD=B,∴CD⊥平面EBD.…(8分)
在Rt△CPD中,tan∠CPD=
CD
DP

∵CD为定值,且∠CPD为锐角,
∴要使∠CPD最大,只要DP最小即可.显然,当DP⊥EB时,DP最小.
因此DB⊥EB,所以当点P在点B处时,使得∠CPD最大.…(11分)
Rt△PCD中,tan∠CPD=
CD
BD
=
2
3

所以在EB上存在一点P,使得∠CPD最大,且∠CPD的正切值为
2
3
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案