精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C的对边分别是a、b、c,已知$\overrightarrow a=({cosA,cosB})$,$\overrightarrow b=({a,2c-b})$,且$\overrightarrow a∥\overrightarrow b$.
(Ⅰ)求角A的大小;
(Ⅱ)若b=3,△ABC的面积${S_{△ABC}}=3\sqrt{3}$,求a的值.

分析 (Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;
(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.

解答 解:(Ⅰ)∵$\overrightarrow a∥\overrightarrow b$,∴(2c-b)•cosA-a•cosB=0,
∴cosA•(2sinC-sinB)-sinA•cosB=0,
即2cosAsinC-cosAsinB-sinA•cosB=0,
∴2cosAsinC=cosAsinB+sinA•cosB,
∴2cosAsinC=sin(A+B),
即2cosAsinC=sinC,
∵sinC≠0∴2cosA=1,即$cosA=\frac{1}{2}$又0<A<π∴$A=\frac{π}{3}$,
(Ⅱ)∵b=3,由(Ⅰ)知∴$A=\frac{π}{3}$,${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×3c×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
∴c=4,由余弦定理有a2=b2+c2-2bccosA=${3^2}+{4^2}-2×3×4×\frac{1}{2}=13$,
∴$a=\sqrt{13}$.

点评 本题考查向量与三角函数相结合求解三角形的几何量,考查余弦定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.(2016-x)(1+x)2017的展开式中,x2017的系数为-1.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{2π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=2sin({2x+\frac{π}{6}})$,若将它的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则函数g(x)图象的一条对称轴的方程为(  )
A.$x=\frac{π}{3}$B.$x=\frac{π}{4}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,射线$l:θ=\frac{π}{6}$与圆C:ρ=2交于点A,椭圆Γ的方程为:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy.
(Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;
(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求$\overrightarrow{AE}•\overrightarrow{AF}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$f(x)=\left\{{\begin{array}{l}{{2^x}-2,x≥0}\\{-{x^2}+3,x<0}\end{array}}\right.$,若f(a)=2,则a的取值为(  )
A.2B.-1或2C.±1或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}}\right.$(α为参数),M是C1上的动点,动点P满足OP=3OM.
(1)求动点P的轨迹C2的参数方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线$θ=\frac{π}{6}$与C1异于极点的交点为A,与C2异于极点的交点为B,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|y=$\sqrt{2-x}$},B={x|3x-x2≥0},则集合A∩B=(  )
A.[0,2]B.[0,3]C.[0,2)D.(-∞,0]

查看答案和解析>>

同步练习册答案