精英家教网 > 高中数学 > 题目详情
设x1,x2是函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的两个极值点,且|x1-x2|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:|b|≤
4
3
9
(Ⅰ)对f(x)求导可得f'(x)=ax2+bx-a2(a>0).(2分)
因为x1,x2是f(x)的两个极值点,所以x1,x2是方程f'(x)=0的两个实根.
于是x1+x2=-
b
a
x1x2=-a

|x1-x2|2=(x1+x2)2-4x1x2=
b2
a2
+4a=4

即b2=4a2-4a3.(4分)
由b2≥0得4a2-4a3≥0,解得a≤1.a>0,
所以0<a≤1得证.(6分)
(Ⅱ)由(Ⅰ)知b2=4a2-4a3,设g(a)=4a2-4a3
则g'(a)=8a-12a2=4a(2-3a).(8分)
由g'(a)>0?0<a<
2
3
;g'(a)<0?
2
3
<a≤1
.(10分)
故g(a)在a=
2
3
时取得最大值
16
27

b2
16
27

所以|b|≤
4
3
9
.(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的两个极值点,且|x1|+|x2|=2.
(1)证明:|b|≤
4
3
9

(2)若g(x)=f'(x)-2a(x-x1),证明当x1<x<2时,且x1<0时,|g(x)|≤4a.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)的两个极值点,且|x1|+|x2|=2.
(1)求a的取值范围;
(2)求证:|b|≤
4
3
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bx+c,且f(1)=-
12

(1)求证:函数f(x)有两个零点.
(2)设x1、x2是函数f(x)的两个零点,求|x1-x2|的取值范围.
(3)求证:函数f(x)在区间(0,2)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,且f(1)=-
a
2
,3a>2c>2b

(1)求证:a>0且-3<
b
a
<-
3
4

(2)求证:函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,求|x1-x2|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案