精英家教网 > 高中数学 > 题目详情

是三个向量,则有下列四个命题:

①若,且,则

②若0,则

③若互不共线,则

 .

其中真命题的序号是            .

 

【答案】

【解析】

试题分析:①若,且,则;不对。因为是实数相等,是向量相等。②若,则;不对。因为向量时,0。③若互不共线,则;不对。因为两向量的数量积是实数,表示与共线 的向量,而表示与共线的向量。④正确。因为按向量的数量积及可推出。

考点:本题主要考查命题的概念及其关系、平面向量的线性运算及数量积。

点评:属基础知识的考查,注意运用平面向量的概念及数量积意义。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:2011届永春一中、培元中学、季延中学和石光华侨联中高三第一次统考数 题型:解答题

本题有(1)、(2)、(3)三个选考题,每题7份,请考生任选2题作答,满分14分.

如果多做,则按所做的前两题计分.

选修4系列(本小题满分14分)

   (1)(本小题满分7分)选修4-2:矩阵与变换

是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.

(Ⅰ)求矩阵的特征值及相应的特征向量;

(Ⅱ)求逆矩阵以及椭圆的作用下的新曲线的方程.

(2) (本小题满分7分)选修4-4:坐标系与参数方程

直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长

(3)(本小题满分7分)选修4—5:不等式选讲

已知,且是正数,求证:.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)(本小题满分7分)选修4—2:矩阵与变换

已知二阶矩阵有特征值及对应的一个特征向量

(Ⅰ)求矩阵

(Ⅱ)设曲线在矩阵的作用下得到的方程为,求曲线的方程.

(2)(本小题满分7分)选修4—4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若圆在以该直角坐标系的原点为极点、轴的正半轴为极轴的极坐标系下的方程为

(Ⅰ)求曲线的普通方程和圆的直角坐标方程;

(Ⅱ)设点是曲线上的动点,点是圆上的动点,求的最小值.

(3)(本小题满分7分)选修4—5:不等式选讲

已知函数不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年福建师大附中高考数学模拟试卷(理科)(解析版) 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线(t为参数),(θ为参数).
(Ⅰ)当时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求的最大值.

查看答案和解析>>

同步练习册答案