精英家教网 > 高中数学 > 题目详情

数列{14-2n}的前n项和为Sn,数列{|14-2n|}的前n项和为,若Sn的最大值为Sm,则n≥m时,________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上海二模)如果无穷数列{an}满足下列条件:①
an+an+2
2
≤an+1;②存在实数M,使an≤M.其中n∈N*,那么我们称数列{an}为Ω数列.
(1)设数列{bn}的通项为bn=5n-2n,且是Ω数列,求M的取值范围;
(2)设{cn}是各项为正数的等比数列,Sn是其前项和,c3=
1
4
,S3=
7
4
证明:数列{Sn}是Ω数列;
(3)设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 |xn+1-xn|≤
1
(2n+1)2
,设yn=sinxn,求证:|yn+1-y1|<
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等比数列,其中a3=1,a4,a5+1,a6成等差数列,数列{
an
bn
}
的前n项和Sn=(n-1)2n-2+1(n∈N+).
(1)求数列{an}、{bn}的通项公式;
(2)设数列{bn}的前n项和为Tn,当n≥3时,求证:Tn-
1
4
1
2
log2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数k≤1图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上;又b1=1,cn=
1
3
(an+2),且1+2a2+22b3+…+2n-2bn-1+2n-1bn=cn,对任意n∈N*都成立,
(1)求数列{an},{bn}的通项公式;
(2)求数列{cn•bn}的前n项和Tn
(3)求证:(i)ln(x+1)<(x>0);(ii)
n
i=2
lnai
ai2
2n2-n-1
4(n+1)
(n∈N*,n≥2).

查看答案和解析>>

同步练习册答案