精英家教网 > 高中数学 > 题目详情
若复数z满足|z-3i|=1,求|z+2|的最大值
1+
13
1+
13
分析:z-3i|=1的复数z对应的点是以C(0,3)为圆心,1为半径的圆,|z+2|表示得复数z所对应的点和A(-2,0)的距离,
由此能求出|z+2|的最大值.
解答:解:|z-3i|=1的复数z对应的点是以C(0,3)为圆心,1为半径的圆,
|z+2|表示得复数z所对应的点和A(-2,0)的距离,
∵|AC|=
4+9
=
13

∴|z+2|的最大值1+
13

故答案为:1+
13
点评:本题考查复数的几何意义及其应用,是基础题,解题时要认真审题,注意两点间距离公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足|z-3+4i|=1(i是虚数单位),则|z|最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足|z+4+3i|=3,则复数z的模应满足的不等式是(  )
A、5≤|z|≤8B、2≤|z|≤8C、|z|≤5D、|z|<8

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足|z+3-4i|=2,则|z|的最大值为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z=
3+i
i
 (其中i是虚数单位),
.
z
为z的共轭复数,则|
.
z
|
=
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)若复数z满足z=
3+i
i
,则|
.
 z 
|
=
10
10

查看答案和解析>>

同步练习册答案