精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+sinxcosx.
(1)求f(x)的最小正周期和最小值;
(2)若α∈(
π
4
π
2
)且f(α+
8
)=
2-
6
4
,求cosα的值.
分析:(1)函数f(x)解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出f(x)的最小正周期,根据正弦函数的值域即可求出f(x)的最小值;
(2)由已知等式利用f(x)的关系式,求出sin2α的值,根据α的范围求出2α的范围,利用特殊角的三角函数值求出α的度数,即可求出cosα的值.
解答:解:(1)f(x)=
1
2
(1+cos2x)+
1
2
sin2x=
1
2
+
1
2
(sin2x+cos2x)=
1
2
+
2
2
sin(2x+
π
4
),
∵ω=2,∴T=π;
∵-1≤sin(2x+
π
4
)≤1,
∴sin(2x+
π
4
)的最小值为-1,
则f(x)的最小值为
1-
2
2

(2)f(α+
8
)=
1
2
+
2
2
sin(2α+π)=
1
2
-
2
2
sin2α=
2-
6
4

∴sin2α=
3
2

∵α∈(
π
4
π
2
),
∴2α∈(
π
2
,π),
∴2α=
3
,即α=
π
3

则cosα=
1
2
点评:此题考查了两角和与差的正弦函数公式,正弦函数的定义域与值域,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案