(2)讨论函数f(x)=
在区间[0,3]上的连续性.
科目:高中数学 来源: 题型:
(本小题满分12分)已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
“我们称使f(x)=0的x为函数y=f(x)的零点.若函数y=f(x)在区间[a,b]上是连续的、单调的函数,且满足f(a)·f(b)<0,则函数y=f(x)在区间[a,b]上有唯一的零点”.对于函数f(x)=6ln(x+1)-x2+2x-1.
(1)讨论函数f(x)在其定义域内的单调性,并求出函数极值;
(2)证明连续函数f(x)在[2,+∞)内只有一个零点.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三综合练习二理科数学试卷(解析版) 题型:解答题
已知函数f(x)=(x2+bx+c)ex,其中b,c
R为常数.
(Ⅰ)若b2>4(c-1),讨论函数f(x)的单调性;
(Ⅱ)若b2≤4(c-1),且![]()
=4,试证:-6≤b≤2.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年安徽省合肥市高三第一次月考文科数学试卷 题型:解答题
(13分)已知函数f(x)=ax+
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题
( (本小题满分13分)
已知函数f(x)=(a-1)x+aln(x-2),(a<1).
(1)讨论函数f(x)的单调性;
(2)设a<0时,对任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com