精英家教网 > 高中数学 > 题目详情
{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,则a3+a5等于(    )

A.5                B.10              C.15                 D.20

提示:∵a2a4+2a3a5+a4a6=a32+2a3a5+a52=(a3+a52

又an>0,∴a3+a5=5.故选A.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x2,g(x)=8x,数列{an}(n∈N*)满足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,记bn=
78
(n+1)(an-1)
.(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)当n为何值时,bn取最大值,并求此最大值;(Ⅲ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=2,an+1=3an-2,n=1,2,3,….
(I)求证:数列{an-1}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).
(1)求a1-3,a2-3,a3-3的值;
(2)求证:数列{an-3}是等比数列;
(3)求数列{an}的通项公式并求其前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次方程anx2-an+1x+1=0,n∈N+有两根α和β,且满足6α-2αβ+6β=3,a1=1
(1)试用an表示an+1;            
(2)证明{an-
2
3
}
是等比数列;
(3)设cn=n•(an-
2
3
)
,n∈N+,Tn为{cn}的前n项和,证明:Tn
4
3
(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n-2an-34,n∈N+
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.

查看答案和解析>>

同步练习册答案