精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-
2
,0)
F2(
2
,0)
,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,求证:k1+k2为定值.
(Ⅰ)依题意,c=
2
,a2-b2=2,
∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,
∴b=|OM|=1,
a=
3
.…(3分)
∴椭圆的方程为
x2
3
+y2=1
.…(4分)
(II)①当直线l的斜率不存在时,由
x=1
x2
3
+y2=1
解得x=1,y=±
6
3

A(1,
6
3
)
B(1,-
6
3
)
,则k1+k2=
2-
6
3
2
+
2+
6
3
2
=2
为定值.…(5分)
②当直线l的斜率存在时,设直线l的方程为:y=k(x-1).
将y=k(x-1)代入
x2
3
+y2=1
整理化简,得(3k2+1)x2-6k2x+3k2-3=0.…(6分)
依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),
x1+x2=
6k2
3k2+1
x1x2=
3k2-3
3k2+1
.…(7分)
又y1=k(x1-1),y2=k(x2-1),
所以k1+k2=
2-y1
3-x1
+
2-y2
3-x2
=
(2-y1)(3-x2)+(2-y2)(3-x1)
(3-x1)(3-x2)

=
[2-k(x1-1)](3-x2)+[2-k(x2-1)](3-x1)
9-3(x1+x2)+x1x2
=
12-2(x1+x2)+k[2x1x2-4(x1+x2)+6]
9-3(x1+x2)+x1x2

=
12-2(x1+x2)+k[2×
3k2-3
3k2+1
-4×
6k2
3k2+1
+6]
9-3×
6k2
3k2+1
+
3k2-3
3k2+1
=
12(2k2+1)
6(2k2+1)
=2
..….…(13分)
综上得k1+k2为常数2..….…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案