精英家教网 > 高中数学 > 题目详情
3.已知奇函数f(x)的定义域为(2a,a+1),求f(a+$\frac{1}{3}$)的值为(  )
A.-1B.0C.1D.2

分析 直接利用奇函数的性质化简求解即可.

解答 解:奇函数f(x)的定义域为(2a,a+1),
可得:-2a=a+1,解得a=-$\frac{1}{3}$.
f(a+$\frac{1}{3}$)=f(0)=0.
故选:B.

点评 本题考查奇函数的简单性质的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,设集合A={x|y=lg(x-1)},集合B={y|y=2x,x≥1},则A∩(∁UB)=(  )
A.[1,2]B.[1,2)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
景点ABCDE
原价(元)1010152025
现价(元)55152530
平均日人数(千人)11232
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对调整前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体情况?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线Ax+y+C=0,其中A,C,4成等比数列,且直线经过抛物线y2=8x的焦点,则A+C=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在极坐标系中,设圆C1:ρ=4cosθ 与直线l:θ=$\frac{π}{4}$ (ρ∈R)交于A,B两点.
(Ⅰ)求以AB为直径的圆C2的极坐标方程;
(Ⅱ)在圆C1任取一点M,在圆C2上任取一点N,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2-4bx+1(a≠0).
(1)若a=1,b∈[-1,1],求函数y=f(x)在[1,+∞)上是增函数的概率;
(2)设(a,b)是区域$\left\{\begin{array}{l}x+y-8≤0\\ x>0\\ y>0\end{array}\right.$,内的随机点,求函数y=f(x)在[1,+∞)上的增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|x2≤x},B={x|$\frac{1}{x}$≥1},则A∩B=(  )
A.(-∞,1]B.[0,1]C.(0,1]D.(-∞,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数 f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,为了得到g(x)=sin 2x的图象,则只需将f (x)的图象(  )
A.向右平移 $\frac{π}{6}$个长度单位B.向右平移 $\frac{π}{12}$个长度单位
C.向左平移$\frac{π}{6}$个长度单位D.向左平移 $\frac{π}{12}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m,n,l是直线,α、β是平面,下列命题中:
①若l垂直于α内两条直线,则l⊥α;②若l平行于α,则α内可有无数条直线与l平行;
③若m?α,l?β,且l⊥m,则α⊥β;④若m⊥n,n⊥l则m∥l;
⑤若m?α,l?β,且α∥β,则m∥l;正确的命题个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案