精英家教网 > 高中数学 > 题目详情
已知数列{an}(n∈N*)满足a1=1且an=an-1cos
2nπ
3
,则其前2013项的和为______.
当n=3k(k∈N)时,cos
2×3kπ
3
=cos2kπ=1

当n=3k+1(k∈N)时,cos
2×(3k+1)π
3
=cos(2kπ+
3
)
=cos
3
=-
1
2

当n=3k+2(k∈N)时,cos
2×(3k+2)π
3
=cos(2kπ+
4
3
π)=-cos
π
3
=-
1
2

由a1=1且an=an-1cos
2nπ
3

得:a2=a1cos
3
=-
1
2
a3=a2cos2π=-
1
2

a4=a3cos
3
=(-
1
2
)×(-
1
2
)=
1
4
a5=a4cos
10π
3
=
1
4
×(-
1
2
)=-
1
8

a6=a5cos
12π
3
=(-
1
8
)×cos4π=(-
1
8
)×1=-
1
8


由此可得从第一项起,数列{an}的每三项和为0,
而2013=671×3,所以,S2013=(a1+a2+a3)+(a4+a5+a6)+…+(a2011+a2012+a2013)=0.
故答案为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知数列{an}(n≥1)满足an+2=an+1-an,且a2=1.若数列的前2011项之和为2012,则前2012项的和等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知数列{an}前n项和为Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,则an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

同步练习册答案