数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
解:当k=0时,显然不成立.
∴当k≠0时,由l⊥AB,可设直线AB的方程为y=-x+b,代入3x2-y2=3中,得(3k2-1)x2+2kbx-(b2+3)k2=0.
显然3k2-1≠0,∴Δ=(2kb)2-4(3k2-1)[-(b2+3)k2]>0,即k2b2+3k2-1>0. ①
由根与系数的关系,得中点M(x0,y0)的坐标
∵M(x0,y0)在直线l上,
∴=+4,即k2b=3k2-1. ②
把②代入①得k2b2+k2b>0,解得b>0,或b<-1.
∴>0或<-1,
即|k|>或|k|<,且k≠0.
∴k的取值范围是(,+∞)∪(-∞,-)∪(-,0)∪(0, ).
科目:高中数学 来源: 题型:
A. B. C. D.
已知双曲线x2-=1,过点P(1,1)能否作直线l,与双曲线交于A、B两点,且点P是线段AB的中点?
已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上,且=0,则点M到x轴的距离为( )
已知双曲线x2-=1,双曲线存在关于直线l:y=kx+4的对称点,求实数k的取值范围.
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区