精英家教网 > 高中数学 > 题目详情

设角A,B,C为△ABC的三个内角.

(Ⅰ)若,求角A的大小;

(Ⅱ)设,求当A为何值时,f(A)取极大值,并求其极大值.

答案:
解析:

  (Ⅰ)由已知,,即.(2分)

  所以,即.(4分)

  在△ABC中,因为,则,所以,从而.(5分)

  而,即.(6分)

  (Ⅱ)因为.(8分)

  因为,则.由,得,所以,即

  所以当时,为增函数;当时,为减函数.(10分)

  故当时,取极大值,且极大值为(12分)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设角A,B,C为△ABC的三个内角.
(Ⅰ)若
2
sin2
A
2
+sin
B+C
2
=
2
,求角A的大小;
(Ⅱ)设f(A)=sinA+2sin
A
2
,求当A为何值时,f(A)取极大值,并求其极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中设角A,B,C所对的边长分别为a,b,c,且
cosC
cosB
=
2a-c
b
,则角B=(  )
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,若sinA=sinB=-cosC.
(1)求角A、B、C的大小;
(2)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设角A,B,C为△ABC的三个内角.
(1)设f(A)=sinA+2sin
A
2
,当A取A0时,f(A)取极大值f(A0),试求A0和f(A0)的值;
(2)当A取A0时,而
AB
AC
=-1,求BC边长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设角A,B,C为△ABC的三个内角.
(Ⅰ)若
2
sin2
A
2
+sin
B+C
2
=
2
,求角A的大小;
(Ⅱ)设f(A)=sinA+2sin
A
2
,求当A为何值时,f(A)取极大值,并求其极大值.

查看答案和解析>>

同步练习册答案