精英家教网 > 高中数学 > 题目详情
已知f(x)=
f(x-7),x≥0
log5(-x),x<0.
则f(9)
等于(  )
分析:先将9代入解析式f(x-7)得到f(2),再将2代入f(x-7)得到f(-5),将-5代入解析式log5(-x)求出值.
解答:解:因为f(x)=
f(x-7),x≥0
log5(-x),x<0

所以f(9)=f(9-7)=f(2)=f(2-7)=f(-5)=log55=1
故选C.
点评:本题考查求分段函数的函数值,关键是判断出自变量所属的段,然后将其代入相应段的解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:全优设计选修数学-1-1苏教版 苏教版 题型:013

已知f(x)=ln|x|,则正确的命题是

[  ]

A.x>0时,(x)=;x<0时,(x)=-

B.x>0时,(x)=,x<0时,(x)不存在

C.x≠0时,(x)=

D.由于x=0无意义,则f(x)=ln|x|不能求导

查看答案和解析>>

科目:高中数学 来源:湖南邵东二中2008届高三质量检测数学试题卷 题型:013

已知f(x)是R上的减函数,且f(0)=3,f(3)=-1设P={x|f(x+t)<3},Q={x|f(x)<-1}若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围

[  ]

A.t<-3

B.t≥-3

C.t<0

D.t≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年西城区抽样理)(14分)

 已知f (x)、g(x)都是定义在R上的函数,如果存在实数mn使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.

f (x)=x2+axg(x)=x+b(R),l(x)= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.

(Ⅰ)设,若h (x)为偶函数,求

(Ⅱ)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;

(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试数学卷 题型:解答题

(本小题满分16分)

已知f (x)、g(x)都是定义在R上的函数,如果存在实数mn使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.

f (x)=x2+axg(x)=x+b(R),= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.

(1)设,若h (x)为偶函数,求

(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=x2+c,且f[f(x)]=f(x2+1)
(1)设g(x)=f[f(x)],求g(x)的解析式;
(2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,且在(-1,0)内是增函数

查看答案和解析>>

同步练习册答案