精英家教网 > 高中数学 > 题目详情
(2012•枣庄二模)已知△ABC中,AB=2,AC=3,BC=4,则角A,B,C中最大角的余弦值为(  )
分析:根据三角形大边对大角,可得∠A是最大角,结合余弦定理算出cosA的值,即得最大角的余弦之值.
解答:解:∵AB=2,AC=3,BC=4,
∴BC为最大边,得∠A是最大角
由余弦定理,得cosA=
AB2+AC2-BC2
2AB•AC
=
4+9-16
2×2×3
=-
1
4

即最大角的余弦值等于-
1
4

故选:A
点评:本题给出三角形的三边之长,求最大角的余弦值,着重考查了三角形的性质和余弦定理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知定义在R上的函数f(x)满足f(x+
3
2
)=-f(x)
,且函数y=f(x-
3
4
)
为奇函数,给出三个结论:
①f(x)是周期函数;②f(x)是图象关于点(-
3
4
,0)对称;③f(x)是偶函数.其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)设等比数列{an}的前n项之和为Sn,若8a2+a5=0,则
S5
S3
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)α是第四象限角,cosα=
3
5
,则cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知i为虚数单位,复数z=(2-i)(1+i)2的实部为a,虚部为b,则logab=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知点Q(0,2
2
)及抛物线
y
2
 
=4x
上一动点P(x,y),则x+|PQ|的最小值是
2
2

查看答案和解析>>

同步练习册答案