精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-ax+(a-1)lnx

(Ⅰ)若a=2,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间.
(Ⅰ)当a=2时,f(x)=
1
2
x2-2x+lnx

f′(x)=x-2+
1
x

f(1)=
1
2
-2=-
3
2
,f'(1)=0
切线方程为y=-
3
2
…(4分)
(Ⅱ)定义域(0,+∞)
f′(x)=x-a+
a-1
x
=
x2-ax+(a-1)
x
=
(x-1)(x+1-a)
x

令f'(x)=0,解得x1=1,x2=a-1
①当a=2时,f'(x)≥0恒成立,则(0,+∞)是函数的单调递增区间
②当a>2时,a-1>1,
在区间(0,1)和(a-1,+∞)上,f'(x)>0;在(1,a-1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,在区间(0,a-1)和(1,+∞)上,f'(x)>0;在(a-1,1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,a-1≤0,在区间(0,1)上f'(x)<0,在区间(1,+∞)上,f'(x)>0,
故f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).
总之,当a=2时,(0,+∞)是函数的单调递增区间
②当a>2时,f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案