精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+bx+c,f(x)≤0的解集为{x|-4≤x≤-1}.
(1)求实数b,c的值;
(2)求函数g(x)=
f(x)x
(x>0),求函数的最小值及此时x的值.
分析:(1)根据函数f(x)=x2+bx+c,f(x)≤0的解集为{x|-4≤x≤-1},可得-4,-1是方程x2+bx+c=0的两根,利用韦达定理可求实数b,c的值;
(2)函数g(x)=
f(x)
x
=
x2+5x+4
x
=x+
4
x
+5
(x>0),利用基本不等式可求函数的最小值及此时x的值
解答:解:(1)∵函数f(x)=x2+bx+c,f(x)≤0的解集为{x|-4≤x≤-1}.
∴-4,-1是方程x2+bx+c=0的两根
-4+(-1)=-b
(-4)×(-1)=c

∴b=5,c=4
∴f(x)=x2+5x+4
(2)函数g(x)=
f(x)
x
=
x2+5x+4
x
=x+
4
x
+5

∵x>0,∴
4
x
>0

g(x)≥2
x•
4
x
+5=9

当且仅当
x>0
x=
4
x
,即x=2时取等号
∴函数g(x)的最小值为9,此时x=2
点评:本题重点考查不等式的解集与方程解之间的关系,考查基本不等式的运用,解题的关键是搞清不等式的解集与方程解之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案