精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
则下列结论正确的是(  )
A.f(x)在(-1,0)上恰有一个零点
B.f(x)在(0,1)上恰有一个零点
C.f(x)在(-1,0)上恰有两个零点
D.f(x)在(0,1)上恰有两个零点
由于函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011

故f(0)=1,f(-1)=(-
1
2
+
1
3
)+(-
1
4
+
1
5
)+…+(-
1
2010
 
1
2011
)<0,故有 f(0)•f(-1)=f(-1)<0.
当x∈(-1,0)时,f′(x)=1-x+x2-x3+…+x2009-x2010=
1-(-x)2011
1+x
=
1+x2011
1+x
>0,
故f(x)在(-1,0)上是增函数,故f(x) 恰有一个零点,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案