精英家教网 > 高中数学 > 题目详情

某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.

(Ⅰ)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;

(Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

试题分析:(Ⅰ)由题得该连锁分店一年的利润(万元)与售价的函数关系式为.  (Ⅱ)要求的最大值,需要利用导数求解, 令,得,此函数中有参数,则需要对进行讨论,.①当,即时,时,上单调递减,故;                   ②当,即时,时,时,

上单调递增;在上单调递减,故,最后需要答.

试题解析:(Ⅰ)由题得该连锁分店一年的利润(万元)与售价的函数关系式为

.

(Ⅱ) 

,得

.

①当,即时,

时,上单调递减,

②当,即时,

时,时,

上单调递增;在上单调递减,

答:当每件商品的售价为7元时,该连锁分店一年的利润最大,最大值为万元;

每件商品的售价为元时,该连锁分店一年的利润最大,最大值为万元.

考点:1.根据题意列函数表达式;2.利用导数求函数最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(7≤x≤9)元时,一年的销售量为(10-x)2万件.
(Ⅰ)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源:《第1章 导数及其应用》2010年单元测试卷(2)(解析版) 题型:解答题

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源:2007年福建省高考数学试卷(理科)(解析版) 题型:解答题

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:2.12 导数在研究函数中的应用与生活中的优化问题举例(1)(解析版) 题型:解答题

某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).

查看答案和解析>>

同步练习册答案